Advanced Electromagnetism Lecture 14 of 15

March 7, 2012 by M. Fabbrichesi

M. Fabbrichesi , SISSA

Transformation of electromagnetic fields and relativistic Lagrangian

The first part of this lesson is dedicated to the transformations of electromagnetic fields [Jackson, Sect. 11.10]. As an example of transformation it is considered the one of an observer in a reference system K that sees a charge q moving by a straight-line path with a velocity v. The charge is at rest in the system K'. These transformations show that E and B fields have no independent existence. In the second part of the lecture, the Lagrangian of a charged particle in external fields is derived by writing down the action integral and by finding an invariant expression for the interaction part: -e/(γc)uαAα. Hence the conjugate moment pα is not only the kinetic one but contains also the vector potential contribution. Finally Lagrange (that corresponds to Lorentz's force) and Hamilton equations are derived [Jackson, Sect 12.1].

0 Likes 0 Dislikes
See All Tags


This does not have any associated tags.